Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Bioprocess ; 11(1): 12, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38647836

RESUMEN

The evaluation of plant-based feedstocks is an important aspect of biorefining. Nicotiana glauca is a solanaceous, non-food crop that produces large amounts of biomass and is well adapted to grow in suboptimal conditions. In the present article, compatible sequential solvent extractions were applied to N. glauca leaves to enable the generation of enriched extracts containing higher metabolite content comparing to direct leaf extracts. Typically, between 60 to 100 metabolite components were identified within the fractions. The occurrence of plant fatty acids, fatty acid alcohols, alkanes, sterols and terpenoids was detected by gas liquid chromatography-mass spectrometry (GC-MS) and metabolite identification was confirmed by comparison of physico-chemical properties displayed by available authentic standards. Collectively, co-products such waxes, oils, fermentable sugars, and terpenoids were all identified and quantified. The enriched fractions of N. glauca revealed a high level of readily extractable hydrocarbons, oils and high value co-products. In addition, the saccharification yield and cell wall composition analyses in the stems revealed the potential of the residue material as a promising lignocellulosic substrate for the production of fermentable sugars. In conclusion a multifractional cascade for valuable compounds/commodities has been development, that uses N. glauca biomass. These data have enabled the evaluation of N. glauca material as a potential feedstock for biorefining.

2.
J Exp Bot ; 70(15): 4039-4047, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31187131

RESUMEN

Wood is extensively used as a construction material. Despite increasing knowledge of its mechanical properties, the contribution of the cell-wall matrix polymers to wood mechanics is still not well understood. Previous studies have shown that axial stiffness correlates with lignin content only for cellulose microfibril angles larger than around 20°, while no influence is found for smaller angles. Here, by analysing the wood of poplar with reduced lignin content due to down-regulation of CAFFEOYL SHIKIMATE ESTERASE, we show that lignin content also influences axial stiffness at smaller angles. Micro-tensile tests of the xylem revealed that axial stiffness was strongly reduced in the low-lignin transgenic lines. Strikingly, microfibril angles were around 15° for both wild-type and transgenic poplars, suggesting that cellulose orientation is not responsible for the observed changes in mechanical behavior. Multiple linear regression analysis showed that the decrease in stiffness was almost completely related to the variation in both density and lignin content. We suggest that the influence of lignin content on axial stiffness may gradually increase as a function of the microfibril angle. Our results may help in building up comprehensive models of the cell wall that can unravel the individual roles of the matrix polymers.


Asunto(s)
Lignina/metabolismo , Microfibrillas/metabolismo , Populus/metabolismo , Módulo de Elasticidad/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Populus/genética
3.
New Phytol ; 219(1): 230-245, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29708593

RESUMEN

Xylan is one of the main compounds determining wood properties in hardwood species. The xylan backbone is thought to be synthesized by a synthase complex comprising two members of the GT43 family. We downregulated all GT43 genes in hybrid aspen (Populus tremula × tremuloides) to understand their involvement in xylan biosynthesis. All three clades of the GT43 family were targeted for downregulation using RNA interference individually or in different combinations, either constitutively or specifically in developing wood. Simultaneous downregulation in developing wood of the B (IRX9) and C (IRX14) clades resulted in reduced xylan Xyl content relative to reducing end sequence, supporting their role in xylan backbone biosynthesis. This was accompanied by a higher lignocellulose saccharification efficiency. Unexpectedly, GT43 suppression in developing wood led to an overall growth stimulation, xylem cell wall thinning and a shift in cellulose orientation. Transcriptome profiling of these transgenic lines indicated that cell cycling was stimulated and secondary wall biosynthesis was repressed. We suggest that the reduced xylan elongation is sensed by the cell wall integrity surveying mechanism in developing wood. Our results show that wood-specific suppression of xylan-biosynthetic GT43 genes activates signaling responses, leading to increased growth and improved lignocellulose saccharification.


Asunto(s)
Proteínas de Plantas/genética , Populus/genética , Madera/crecimiento & desarrollo , Xilanos/biosíntesis , Cámbium/genética , Cámbium/crecimiento & desarrollo , Pared Celular/química , Pared Celular/genética , Celulosa/genética , Celulosa/metabolismo , Quimera , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Lignina/genética , Lignina/metabolismo , Familia de Multigenes , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/crecimiento & desarrollo , Regiones Promotoras Genéticas , Interferencia de ARN , Azúcares/metabolismo , Madera/química , Madera/genética , Xilanos/genética
4.
Planta ; 247(4): 887-897, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29270675

RESUMEN

MAIN CONCLUSION: CAD-deficient poplars enabled studying the influence of altered lignin composition on mechanical properties. Severe alterations in lignin composition did not influence the mechanical properties. Wood represents a hierarchical fiber-composite material with excellent mechanical properties. Despite its wide use and versatility, its mechanical behavior has not been entirely understood. It has especially been challenging to unravel the mechanical function of the cell wall matrix. Lignin engineering has been a useful tool to increase the knowledge on the mechanical function of lignin as it allows for modifications of lignin content and composition and the subsequent studying of the mechanical properties of these transgenics. Hereby, in most cases, both lignin composition and content are altered and the specific influence of lignin composition has hardly been revealed. Here, we have performed a comprehensive micromechanical, structural, and spectroscopic analysis on xylem strips of transgenic poplar plants, which are downregulated for cinnamyl alcohol dehydrogenase (CAD) by a hairpin-RNA-mediated silencing approach. All parameters were evaluated on the same samples. Raman microscopy revealed that the lignin of the hpCAD poplars was significantly enriched in aldehydes and reduced in the (relative) amount of G-units. FTIR spectra indicated pronounced changes in lignin composition, whereas lignin content was not significantly changed between WT and the hpCAD poplars. Microfibril angles were in the range of 18°-24° and were not significantly different between WT and transgenics. No significant changes were observed in mechanical properties, such as tensile stiffness, ultimate stress, and yield stress. The specific findings on hpCAD poplar allowed studying the specific influence of lignin composition on mechanics. It can be concluded that the changes in lignin composition in hpCAD poplars did not affect the micromechanical tensile properties.


Asunto(s)
Oxidorreductasas de Alcohol/deficiencia , Lignina/fisiología , Populus/fisiología , Lignina/metabolismo , Microfibrillas/metabolismo , Microfibrillas/fisiología , Populus/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Resistencia a la Tracción , Difracción de Rayos X
5.
Plant Physiol ; 176(1): 611-633, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29158331

RESUMEN

Lignocellulosic biomass is recalcitrant toward deconstruction into simple sugars due to the presence of lignin. To render lignocellulosic biomass a suitable feedstock for the bio-based economy, plants can be engineered to have decreased amounts of lignin. However, engineered plants with the lowest amounts of lignin exhibit collapsed vessels and yield penalties. Previous efforts were not able to fully overcome this phenotype without settling in sugar yield upon saccharification. Here, we reintroduced CINNAMOYL-COENZYME A REDUCTASE1 (CCR1) expression specifically in the protoxylem and metaxylem vessel cells of Arabidopsis (Arabidopsis thaliana) ccr1 mutants. The resulting ccr1 ProSNBE:CCR1 lines had overcome the vascular collapse and had a total stem biomass yield that was increased up to 59% as compared with the wild type. Raman analysis showed that monolignols synthesized in the vessels also contribute to the lignification of neighboring xylary fibers. The cell wall composition and metabolome of ccr1 ProSNBE:CCR1 still exhibited many similarities to those of ccr1 mutants, regardless of their yield increase. In contrast to a recent report, the yield penalty of ccr1 mutants was not caused by ferulic acid accumulation but was (largely) the consequence of collapsed vessels. Finally, ccr1 ProSNBE:CCR1 plants had a 4-fold increase in total sugar yield when compared with wild-type plants.


Asunto(s)
Aldehído Oxidorreductasas/genética , Arabidopsis/enzimología , Arabidopsis/fisiología , Biomasa , Mutación/genética , Xilema/fisiología , Aldehído Oxidorreductasas/metabolismo , Arabidopsis/citología , Arabidopsis/ultraestructura , Metabolismo de los Hidratos de Carbono , Proliferación Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Ácidos Cumáricos/farmacología , Lignina/metabolismo , Metabolómica , Especificidad de Órganos , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Ploidias , Plantones/efectos de los fármacos , Plantones/metabolismo , Xilema/ultraestructura
6.
Plant J ; 91(3): 480-490, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28440915

RESUMEN

Lignin engineering is a promising tool to reduce the energy input and the need of chemical pre-treatments for the efficient conversion of plant biomass into fermentable sugars for downstream applications. At the same time, lignin engineering can offer new insight into the structure-function relationships of plant cell walls by combined mechanical, structural and chemical analyses. Here, this comprehensive approach was applied to poplar trees (Populus tremula × Populus alba) downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD) in order to gain insight into the impact of lignin reduction on mechanical properties. The downregulation of CAD resulted in a significant decrease in both elastic modulus and yield stress. As wood density and cellulose microfibril angle (MFA) did not show any significant differences between the wild type and the transgenic lines, these structural features could be excluded as influencing factors. Fourier transform infrared spectroscopy (FTIR) and Raman imaging were performed to elucidate changes in the chemical composition directly on the mechanically tested tissue sections. Lignin content was identified as a mechanically relevant factor, as a correlation with a coefficient of determination (r²) of 0.65 between lignin absorbance (as an indicator of lignin content) and tensile stiffness was found. A comparison of the present results with those of previous investigations shows that the mechanical impact of lignin alteration under tensile stress depends on certain structural conditions, such as a high cellulose MFA, which emphasizes the complex relationship between the chemistry and mechanical properties in plant cell walls.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Pared Celular/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Populus/metabolismo , Oxidorreductasas de Alcohol/genética , Pared Celular/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Populus/genética , Espectroscopía Infrarroja por Transformada de Fourier
7.
Biotechnol Biofuels ; 10: 98, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28428822

RESUMEN

BACKGROUND: Lignocellulose from fast growing hardwood species is a preferred source of polysaccharides for advanced biofuels and "green" chemicals. However, the extensive acetylation of hardwood xylan hinders lignocellulose saccharification by obstructing enzymatic xylan hydrolysis and causing inhibitory acetic acid concentrations during microbial sugar fermentation. To optimize lignocellulose for cost-effective saccharification and biofuel production, an acetyl xylan esterase AnAXE1 from Aspergillus niger was introduced into aspen and targeted to cell walls. RESULTS: AnAXE1-expressing plants exhibited reduced xylan acetylation and grew normally. Without pretreatment, their lignocellulose yielded over 25% more glucose per unit mass of wood (dry weight) than wild-type plants. Glucose yields were less improved (+7%) after acid pretreatment, which hydrolyses xylan. The results indicate that AnAXE1 expression also reduced the molecular weight of xylan, and xylan-lignin complexes and/or lignin co-extracted with xylan, increased cellulose crystallinity, altered the lignin composition, reducing its syringyl to guaiacyl ratio, and increased lignin solubility in dioxane and hot water. Lignin-associated carbohydrates became enriched in xylose residues, indicating a higher content of xylo-oligosaccharides. CONCLUSIONS: This work revealed several changes in plant cell walls caused by deacetylation of xylan. We propose that deacetylated xylan is partially hydrolyzed in the cell walls, liberating xylo-oligosaccharides and their associated lignin oligomers from the cell wall network. Deacetylating xylan thus not only increases its susceptibility to hydrolytic enzymes during saccharification but also changes the cell wall architecture, increasing the extractability of lignin and xylan and facilitating saccharification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...